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a-SrZnz(PO& is monoclinic (space group: P2,/c) with a = 8.3232(4) A,, h = 9.5101(4) A, c = 9.0317(4) 
A, p = 92.293(3)“, and Z = 4. The crystal structure is refined from 3426 reflections to R = 0.026 (R, = 
0.034). Zinc and phosphorus tetrahedra build up a three-dimensional network isotypic to the 
hurlbutite-type CaBe2(P0J2. The strontium atoms form isolated S-0, polyhedra located between large 
octagonal holes. The difference from the cu-CaZn2(P0& structure is pointed out. 8 1990 Academic 

Press, Inc. 

Introduction 

The orthophosphates i’k&(PO&, with M 
= Mg*+, Ca*+, Sr2+, CdZ+, and Zn*+, have 
been extensively studied in the past years 
for their luminescence applications (1-4). 
Ternary compounds M2M’(P0& have also 
been evidenced. Generally, the orthophos- 
phates show polymorphic transitions and 
their luminescence properties are depen- 
dent from the polymorph (4). If the struc- 
tures of the Mn(P04)* compounds are well 
known (58), this is not the case for the 
ternary phosphates. For example, the 
structure resolution of a-CaZn2(P04)2 was 
achieved in 1988 by Cheetham (9) and for 
SrZn2(P04)2 phases only nonindexed X-ray 
powder data are available. 

During crystal growth of fluorophosphate 
compounds containing Na, Sr, and Al at- 
oms by a chloride flux method (NaCl + 
ZnCl*), specimens of a-SrZn2(P04)2 were 
isolated. This incited us to solve the struc- 

ture of this phase on the basis of single- 
crystal diffraction data. 

Preparation 

Crystals of a-SrZn2(P04)2 were synthe- 
tized, as by-products, with a chloride flux 
method (10, 11) during a growth of fluoro- 
phosphates. They were obtained from the 
flux mixture, 2NaF + SrF2 + 0.33Sr3(P0& 
+ 0.67AlF3 + 0.33AlP04 + 5.4NaCl + 
3.3ZnC12, by slow cooling (6°C /hr) from 
7oo”c, with a large amount of 
Na&-2AlZ(P04)F9 (12). 

The X-ray pattern of the crushed crystals 
allows to identify the compound as the low 
temperature form (a) by comparison with 
the JCPDS diffraction file 14-208. This 
result is in agreement with the transition 
temperature previously reported: (Y = p at 
1035°C (2) and corresponds to the following 
possible exchange inside the melt: 
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TABLE I 

CRYSTAL DATA AND CONDITIONS OF DATA COLLECTION AND REFINEMENT FOR a-SrZn2(P0& 

Symmetry 
Space group 
Cell parameters 

Monoclinic 
P2,/c (No. 14) 
a = 8.3232(4) A, b = 9.5101(4) d;, c = 9.0317(4) hi, p = 92.293(3)“, V = 

714.32 d;‘, Z = 4 
Crystal volume (10e3 mm3) 
Radiation 
Aperture (mm) 
Scanning mode 
Range registered 
Absorption correction 
Reflections measured: 

Number of refined parameters 
Weighting scheme 
Secondary extinction 
Maximum height in final 

Fourier difference map 

1.14 
MoKa (graphite monochromatized) 
3.5 x 3.5 
0128, 36 steps of PO, 0.03 5 ho 5 0.035, time per step: l-4 set 
20tin-28,, 4-80 hkL,ax , 15 17 16 
Gauss method, JI = 145.15 cm-‘, fmin = 0.263, f,,, = 0.377 
Total 4626 (one independent set) 
Used in refinement 3426 (I/a (I) > 3) 
119 
0 = 0.4484(d(F) + 0.001745F3 
E = 3.8 x IO-’ 
0.11 e-/A3 

2ZnC12 + Sr3(PO& --f photographs indicate a monoclinic symme- 
2SrC12 + SrZn2(PO& try and lead to the space group K&/c (No. 

14). Intensities data collection was made on 

Structure Resolution an AED Siemens-Stoe four circles dif- 
fractometer. Table I gathers the experimen- 

A crystal with an approximate volume of tal conditions. The cell parameters were re- 
1.14 x 10e3 mm3 was chosen for the struc- fined from the positions of 32 reflections 
true determination. Laue and precession with 28 = 30” by the double scan technique. 

TABLE II 

ATOMIC PARAMETERS, ANISOTROPK TEMPERATURE FACTORS (Uij x Io(),a AND Beq (A*) FOR a-SrZn#O& 

Atom X Z 

Sr 
Znl 
Zn2 
PI 
PZ 
0, 
02 
03 

04 
OS 
06 
07 
OS 

0.2456(O) 0.0819(O) 06074(O) 104(l) 871) 109(l) 2(l) 
0.5739(O) 0.5711(O) 0.2887(O) 115(l) 103( 1) loo(l) -l(l) 
0.9195(O) 0.3197(O) 0.4510(O) loo(l) W) loo(l) 5(l) 
0.5428( 1) 0.2941(l) 0.4314(l) W2) 71(2) 8W -4(l) 
0.0576(l) 0.0847(l) 0.2507( 1) 8X3 842) W2) -lo(l) 
0.4746(2) 0.3866(2) 0.3024(2) 158(7) loo(5) 1W6) 234) 
0.4178(2) 0.2059(2) 0.0528(2) 145(6) 125(6) 109(6) 8(4) 
0.2276(2) 0.0621(2) 0.3200(2) 996) 233(8) 1106) 9(5) 
0.0174(2) 0.4490(2) 0.3135(2) 145(6) 97(5) 154(6) 34(5) 
0.0637(2) 0.3033(2) 0.6287(2) 150(6) 125(6) lOl(6) - 14(5) 
0.5658(2) 0.1413(2) 0.3796(2) 146(7) ill(6) 147(6) -35(5) 
0.6999(2) 0.1407(2) 0.9909(2) 916) 180(7) 218(8) 7W) 
0.9510(2) 0.3729(2) 0.8793(2) 164(7) 91(5) 141(6) 31(5) 

lo(l) -7(l) 0.79(l) 
WI -16(l) 0.83( 1) 

lo(l) 6(l) 0.75(l) 
W) -5(l) 0.61(l) 
WI) -31) 0.61(l) 
W3 o(5) 0.97(5) 
55(5) 19(5) 0.99(5) 
-7(5) -3(5) 1.17(5) 
44(5) 27G) 1.03(5) 
3(5) 2W) 0.99(5) 

-24(5) 1415) 1.07(5) 
l(5) 2W) 1.29(6) 

71(5) 2X5) 1.03(5) 

L? The vibrational coefficients relate to the expression T = exp[-2m2(h2a*ZUll + k*b**Un + 12c*2U33 + 
2hka*b*CJ12 + 2hla*c*V1, + 2klb*c*V&]. 
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Intensities were corrected for Lorentz- 
Polarisation effects as well as for absorp- 
tion. All the calculations were performed 
with SHELX76 (23). Atomic scattering fac- 
tors and dispersion correction factors were 
taken from “International Tables for X-ray 
Crystallography” (14). The structure was 
solved from the TANG option of direct 
methods, The refinement of atomic parame- 
ters and isotropic thermal motion for all at- 
oms converged to the reliability factor R = 
0.045 (R, = 0.059). The introduction of the 
anisotropic thermal motion led to the val- 
ues 0.026 and 0.034 for R and R,, respec- 
tively. Table II gathers the atomic coordi- 
nates and the thermal motion parameters 
whereas Table III gives the main inter- 
atomic distances and angles. A list of Fo/Fc 
values can be obtained on request to the 
authors. 

Structure Description 

The a-SrZn2(P0& structure is made 
from connected zinc and phosphorus regu- 
lar tetrahedra which build up a three-di- 
mensional network [ZnP04],. Each zinc 

- 

V 0- V 0- 

0 0 

FIG. 1. (100) projection of a pseudo-layer of zinc and 
phosphorus (shaded) tetrahedra at x = 0.5. Strontium 
atoms are represented by circles. 
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06 
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FIG. 2. Strontium polyhedron: a distorted mono- 
capped trigonal prism. 

tetrahedron shares corners with four phos- 
phorus tetrahedra, and vice versa. In this 
framework, it appears as pseudo-layers of 
tetrahedra in the plane (b, c) around x = 0 
and 4 as shown in Fig. 1. In these layers, the 
large cavities surrounded by the eight tetra- 
hedra are occupied by the strontium atoms 
(x = 0.25 and 0.75) which are sevenfold co- 
ordinated (Fig. 2). The connection mode 
between the sheets along the a-axis is 
shown in Fig. 3. This kind of arrangement is 

FIG. 3. (001) projection of connection mode between 
layers. 
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TABLE III 

DISTANCES (d;) AND ANGLES (“) IN a-SrZn2(P0& 

Sr polyhedron (Sr-0) = 2.607 A 

Sr 02 01 O8 03 05 06 04 
02 2.535(l) 2.859(3) 5.098(2) 3.395(2) 3.054(2) 4.187(2) 4.756(l) 
01 68.3(2) 2.561(l) 4.473(2) 4.768(2) 4.122(2) 2.939(3) 3.857(2) 
08 170.7(l) 120.9(l) 2.580(l) 3.625(2) 4.095(2) 3.209(2) 2.451(4) 
03 82.7(l) 134.9(l) 88.8(l) 2.601(l) 3.898(2) 3.699(2) 4.854(2) 
05 72.9(l) 105.9(l) 104.3(l) 97.0(l) 2.605(l) 5.235(3) 2.956(3) 
06 108.0(l) 68.8(2) 75.9(l) 89.8(l) 173.2(l) 2.640(l) 4.348(2) 
04 129.3(l) 93.6(l) 54.9(2) 131.3(l) 67.3(2) 108.2(l) 2.728(l) 

Zn, tetrahedron (Zn,-0) = 1.954 8, 

zn1 02 01 03 06 

02 1.921(l) 3.411(l) 3.241(l) 3.212(2) 
01 123.9(l) l.!%(2) 3.220(2) 2.939(2) 

03 113.4(l) 111.2(l) 1.957(l) 2.942(2) 

O6 110.3(l) 96.6(l) 96.3(l) 1.992(2) 

Zn, tetrahedron (Zn2-0) = 1.950 8, 

Z% 
07 

04 
08 

05 

07 04 08 

1.914(l) 3.258(2) 3.230(2) 
115.0(l) 1.949(2) 3.171(2) 
112.7(l) 108.3(l) 1.965(l) 
114.7(l) 108.2(l) 96.3(l) 

P, tetrahedron (P,-0) = 1.539 A 

OS 

3.271(2) 
3.176(l) 
2.931(2) 
1.971(l) 

Pl 

07 

O6 

02 

01 

07 06 02 

1.525(l) 2.543(2) 2.513(2) 
112.1(2) 1.541(l) 2.496(l) 
110.1(2) 108.1(2) 1.542(2) 
108.5(Z) 110.7(2) 107.3(2) 

P2 tetrahedron (P2-0) = 1.539 A 

01 

2.494(2) 
2.542(2) 
2.489(2) 
1.549(2) 

p2 05 04 03 08 

OS 1.534(2) 2.512(2) 2.509(l) 2.571(2) 
04 109.7(2) 1.537(l) 2.564(2) 2.451(l) 

03 109.5(2) 112.9(2) 1.539(l) 2.463(2) 

08 113.3(2) 105.4(2) 106.1(2) 1.544(l) 

encountered in the framework of the natu- Al/Si disorder. The main difference be- 
ral minerals hurlbutite CaBe2(PO& (15) tween cx-SrZn2(PO& and CaBe2(P0& 
and paracelsian BaA12(SiO& (16); how- comes from the coordination of strontium 
ever, in the latter there is a small degree of and calcium atoms; respectively isolated 
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SrO, polyhedra and zig-zag strip of Ca09 References 
polyhedra. 

The a-SrZn2(P04)2 structure is very dif- 
ferent from that of a-CaZn2(P0& (9). In- 
deed in the calcium compound, there are 
two zinc sites, one four- and the other five- 
coordinated, linked to the phosphate tetra- 
hedra to form layers between which the cal- 
cium ions lie. 

The luminescence properties of the 
strontium orthophosphate have been re- 
ported by Hummel (2) for tin-activated 
compounds and by Brown (4) for Eu2+-acti- 
vated ones. For a-SrZn2(P04)2 a blue emis- 
sion (0.02 Sn2+ activated) at about 470 nm is 
observed with 253.7 nm radiation or cath- 
ode ray excitation. Taking into account our 
structural results, we can say that the blue 
emission of a-SrZn2(P0J2 is characteristic 
of tin in sevenfold coordination due to the 
vicinity of ionic radii between Sr2+ and Sn*+ 
(respectively 1.21 and 1.22 A). 
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